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Introduction

- By exploiting the properties of superposition and
time tnvariance, if we know the response of an LTI
system to some inputs, we actually know the response to

many inputs
It xi[n] = yr[nl

then ) . QX [n] = X Ak Y [n]
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Introduction

- If we can find sets of “basic” signals so that

= We can represent rich classes of signals as linear
combinations of these building block signals.

= The response of LTI Systems to these basic signals
are both simple and insightful.

- If we represent input signal as a linear combination of
these basic signals, then the output is the combination
of the responses of such basic signals.

- Candidate sets of basic signal
= Unit impulse function o)/ d[n]
= Complex exponential/sinusoid signals. giat [ n
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2.1.1 The Representation of Discrete-Time
Signals in terms of Impulses

« For example:
x[n]=...x[-3] 0[n+3]+ x[-2] O[n+2]+ ...+x[0] O[n]
+x[1] O[n-1]+...

- 1.e.: X[n] can be represented as the weighted sum

400

x[n] = Z x[k]8[n — k]

N

Weight Basic signal
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2.1.2 Convolution-Sum Representation of LTI
Systems

e 1.Assume 5[ n] —> f;[n] ———  Unit impulse response

5[1’? — ]f] —> f][ﬁ — ](] — Time invariant

400

and x[n] = Z x[k]6[n — k]

k=—o0

so | ylnl= 3 xlk]-Hn—k]=x{n]* h[n]
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Convolution-Sum Representation of LTI Systems

- LTI system can be represented by using unit
impulse response.

- The output of LTI system is the convolution
sum of input and unit impulse response.




Institute of Media, i3 e
Information, and Network S

M.l

Convolution-Sum Representation of LTI Systems

« 2. Convolution sum
yln]= xl[”] * xz[”]

=" x[k]-x,[n—k]

=" x,[k]-x,[n—k]
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Convolution-Sum Representation of LTI Systems

» 2, Convolution sum
»Computing method 1-- graphic method
> Step 1: change variablen — k
x,[n] — x[k], x,[n]— x,[K]
= Step 2: reflect: x,[k] — x,[-K]
- Step 3: shift:
x,[-k] —, x,[n-K]
= Step 4: multiply and sum:

2 X lklx,[n—k]
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Convolution-Sum Representation of LTI Systems

ux[n]
Example:
oty |l 0SnS4 [ { W [
0 others R
0 1 2 3 4 n
A h[n] //.,/
" 0<n<6 4
Hnp=1" 0 " )
0  others ’/T {
Determine  y[n]=x[n]* h[n] 0 1 6
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x[k]
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Convolution-Sum Representation of LTI Systems

- 2. Convolution sum
»Computing method 2-- the property of ol7]

x[n]*o|n]= x|n]

x[n]*oln—n,|=x[n—n,]

Example: Let x[n]=u[n+2]-u[n-1]
x,[n]=2"(O[n]+o[n—1]+o[n—-2])
Determine  y[n|=x[n]*x,[n]

Solution: Xi[n]=0[n+2]+o[n+1]+0d[n]
x,[n]=0[n]+20[n—-1]+40[n-2]
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[ oln-n*oln—n,|=0[n—n, -n,] }

v, [1] 4l s S[n+1] S[n]

S[n] oln+2]  oln+ll - oln]
25(n—11 | 26[n+1) 2(n]  28[n-1]

-
-
L

46n-21 | 4s[n] - 4d[n—-1}  4S[n-2]

y[n]=[n+2]+38[n+1]+78[n]+ 68[n —1]+48[n 2]

Note: only suitable for limited length sequence.
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2.2.1 The representation of Continuous-Time
Signals

Approximate a CT signal x(t) as a sum of shifted, scaled pulses
If

0<7r<A

X0
then B o
()= > x(kA)S, (1 — kA)A » '

k=—wo

others

(1]
5&(3‘)=“Z
0

X(t)

— V

oA
* SO
x(1) = lim () = lim x(kA)S, (1 = kA)A
— A—

o0

w(f)a(t —7)dr
Weights # = T Basic Signals
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2.2.2 The Convolution Integral Representation
of LTI System

X© 1T system —— Y

» For a LTI system with the response of h(t) to the unit
impulse 6(t)

o(t) = h(t) —— Unit Impulse Response
Time-invariance allows

o(t—7) >h(t—17)
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The Convolution Integral Representation of LTI
System

 Considering the weighted integral of delayed impulse
representation of x(t)

X(t) = ]2 X(r)o(t—7)dr

—00

* SO
y(t) = [x(x)h(t—7)dz

y(t) = TX(T)h(t —7)d7 = X(t) *h(t)
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The Convolution Integral Representation of LTI
System

1. A LTI system is completely characterized by its response
to the unit impulse ---- h(1)

2. The response y(t) to an input CT signal x(t) of a LTI
system is the convolution of h(t) and x(t)
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The Convolution Integral Representation of LTI
System

« Convolution Integral

y(t) = X, (1) * X, (1)
= [ %(0) %, (t-7)dz

= [ %,(r) %, (t-7)dz
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The Convolution Integral Representation of LTI
System

« Convolution Integral

y(t) = X, (1) * X, (1)
= [ %(0) %, (t-7)dz

= [ %,(r) %, (t-7)dz
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The Convolution Integral Representation of LTI
System

» Method 1 — graphic method
= Step 1. Replace t with 1 for signals x,(t) and x,(t), i.e. T
is the independent variable
= Step 2. Obtain the time reversal of x,(1)

= Step 3. For the output value at any specific time t, shift
x,(-t) with offset t to obtain x,(t-t)

= Step 4. Multiply the two sequences x,(7) and x,t-1)
obtained in Step 1 and Step 3, respectively, and
integrate the resulting product from r=—0 to 7=
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Example:

1 O<t<T

¢! x() = {0 others

I 0<t<2T
h(t) =
0 others

Determine  y(¢) = x(¢) = h(¢)

2T

2T
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T:I h{t_ﬂ
2T
1h m Tt 2T
0T F F 1 T
1-2T
h{t—1) h{t—1}
2T
I\"H - J“\ s
’f ™ : tl}z‘r 1 T
t=2T
h{t—1)
hit—3) 21
of R t =31
Det=T _ '
o / t T
- T
‘_F ot T '
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The Convolution Integral Representation of LTI
System

T

» Method 2 -- exploit the property of o(t)

x(t)*o(1) = x(7)
X(£)*S(t—t,) =x(t—1,)

It Y(t):xl(t)*xz(t)
Then Y (1) =x"(0)*x,"" (1)
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Example:

1 O<t<T

et X = {0 others

2T

I 0<t<2T
h(t) =
0 others

Determine  y(Z) = x(¥) * ()

2T

A J
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V(O =x@O*h(t) y)=[ y()r
cx () =0)-6@=T1)
Yy (O =x @) xh(t)=h(t)=h(t=T)

! 0<t<T
T I'<t<2T
I'—t 2T <t<3T

0 others

T
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vy=[ y(@de

while 0=<t<T

I <t<?2T

while

T t T
v(0)y=| wr+| Tdr =S+ T(-T)=Tt-=—

while 2T <t <3T

I 2T t
(1) = L rdr+L Tdr+LT(T —7)dT = -+ Tt+

others y(t)=0

T

2

2

t? 37
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h x t A x t
Exercise1: ’ @ 2V
*
=7
- I
T T t T T t
t X, () 2 X(1)
1
* 5
.-":t .
T T "t
1 ! T, T,
Exercise2:
S A
-N, ‘ N, = N, ‘ N,
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Supplements -- convolution

T

1. The Commutative Property (ZZ#:/ )

x(2)* h(t) = h(t) *x(t)
2. The Distributive Property (4 )
x(@)* (@) + Iy ()= x(@) * 1y (1) + x(@) * 1, (7)

3. The Associative Property (&4 )

xX(O)* (I () * hp () = () * 14 (6)) * P 2)
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Supplements -0 function

1. Definition

[ swar=1 5[n]={1’”20 > S[k]=
S()=0.1=0 =

2. Odd-even property (FHE 1)

o(=1) = 0(1) ol-n]=o|n]

3. The Differential and Integration Property (5fR4r4¢1E )

j5(r)dr:u(r) ané'[k] =u|n|
0 fr=—on

du(t)

” =0(1) uln|—uln—1]=o[n]




Institute of Media,
Information, and Network

]

Supplements -0 function

4. The Shifting Property in time domain (B #45#E )

x(t)*6(t—1,)=x(t—1,) ‘ x[n]*o[n—m]=x[n—m]
5. Multiply
x(0)o(t—1ty) =x(1y)o(t—1,) ‘ x[n]o[n—n, ] = x[n;]o[n —n,]

6. Sifting property(5Fi&51E)

I: x(7)o(t—1)dr = x(1) ;: x[k]o[n —k] = x[n]
7. Scale property (R B
5(at) = —8(1) Slan] = 8]

a
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2.3.1 The Commutative Property ( % ifi f# )

x[n]* h[n|=hln]*x[n]
x(1)*h(t)=h(r)*x(1)

x(1)

s h(t) ———

|

LON

g
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2.3.2 The Distributive Property ( 7 [l # )

x(n|* (b [n]+ hy[n]) = x|n]* h|n]+x{n]* hy|n]

(1) [y (0) + Iy (1)] = x(0) % By (0 + x(0) * Iy (1)

(1)
x(7) f‘) y(f)__'ﬁ x(7) " (D) +h, (1) y(f)__'

h, (1)
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2.3.3 The Associative Property ( % & i)

x{n]* (hy[n]* hy[n]) = (x[n]* h[n]) * hy[n]
x(1) [y (1) * hy ()] = [x(1) * hy (1) ] * h, (1)

x(7) V(1) x(1)

—rhl(f) -.:hz (f) —rh > h](f)*;?z(f) y(t) b
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2.3.4 LTI Systems with and without
Memory ( it It fl T il WHLTIZ 4 )

vy n] = x[n]*h[n]= Zl‘[k]f?[ﬁ — k]

According to the definition of memoryless, y[n] only
depend on x[n], so

An—-4k]l =0k # n

The unit impulse response of memoryless LTI:

hnl=ko[n] 1 Ht]=kd[t]
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2.3.5 Invertibility of LTI Systems ( LTI # 4
) Al )

 According to the property of identical system, if h(t) is
invertible and its inverse system is hi(t), then

h(t)s (1) =5(1) | h(n)* b, (n) = 5(n)

- For example:

hn)l=uln] —  yln|= Zx[k]

k=-

h[n)=0[n)-0n-1 —  Ynl=xn]-xn-1]
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2.3.6 Causality for LTI Systems ( LTI # % i)
R )

v Vn] = x[n]*h[n]= Z-‘r[k]h[ﬁ d

According to the definition of causality, y[n] only
depend on x[k] (k<=n), so

An-4kl =0k > n

l.e.

h(t)=0 fort<0
h[n]=0 forn<0

Sufficient and necessary condition
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2.3.7 Stability for LTI Systems ( LTI# % i
fa M)

 The sufficient and necessary condition for a LTI system
to be stable 1s that its impulse response satisfies

joo ‘h(t)‘dt < o0 Absolutely integrable

o0

Z |h[n]| < o0 Absolutely summable

N=—0

Hint:
| x[n]|< B

| y[n] = ih[k]X[n —k]I< Q| Wk x[n = k]| < B | hk]|
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2.4.1 Linear Constant-Coefficient
Differential Equations

kzi; o~ (t) kib akx(t)

- The differential equation describes the implicit
expression between the input and output of the system.
- The solution of differential equations is to find the
explicit expression between input and output.
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- However, only a linear constant-coefficient
differential /difference equation cannot specify a
continuous-time system uniquely.

Other conditions are required!

« The complete solution of a linear constant-coefficient
differential /difference equation can be decomposition
into:

v" Homogeneous Solution (natural response) and Particular
Solution (force response)

v' Zero-Input Response and Zero-State Response

v" Transient-State Response and Steady-State Response
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2.4.1.1. Homogeneous Solution (natural response) and Particular
Solution (forced response) (t) Y, (D) +y,(t)

(Whomogeneous solution (FZ%#: Y, (1) satisfies
N
Z 3,y (t)=0
k=0

Determine the characteristic values of

ZN: aa’ =0
k=0

a.S al\ az ) [©) O O aN

a) if all a, are the characteristic values of order 1, (FL.1%)

Y, (1) = Z Ae“
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b). if there are r different characteristic values (5 EiR)

Suppose q; is the k order repeated root

k N
v, (1) = ZAftk_ieaif T ZAjeaﬁ
i=l1

j=k+1

Notes:
1. the coefficients A; or A; should be determined by the auxiliary conditions

simultaneously with those in the particular solution, since the condition is
the auxiliary condition to determined the overall input-output relationship .
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® particular solution (4#f#) Y (t)

For any input signal

Then for y,(t) is in th
different forms of f(t)

f(t)

x(t), we can get f(t) as f (1) = Zb X" (t)

k=0
e following forms corresponding to

Corresponding form of particular solution

cost/sin pt

B,jt” + Bt +---+ B t+ B,

(Constant input is a special case with p=0)

BeO‘t a is not the characteristic value

B te“t + B e“t a is the characteristic value with order 1

B,t“e” + Bt“ ‘e’ +..-+ B, e”
a is the characteristic value with order k

B, cos St + B, sin St
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(3 Determine coefficients in yp(t) Y (t)

1. Coefficients in the partlcular solution: substltutlng Yp(t) in the equation
(k) (k)
Zak (t) = Zb X (1)

we can obtain all the coefficients itn the particular solution, except for
those items associated with ea , Wwhere a is the characteristic value

2. Other coefficients: substituting the complete solution in the initial
conditions,

vy (0,)=c, tor k=01...,(N-1)

Then all coefficients in the complete solution are obtained

Notes:

1. The particular solution of a system is fully determined by the input signal;

2. As for the homogeneous solution, the form only determined by the system itself,
the input signal will show its impact on the coefficients in solution
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TIP

» The complete solution=
homogeneous solution + particular solution

y(t) = ¥, (1) +y, ()

- Natural response --- homogeneous response , determined by
the characteristics of systems.

Forced response --- particular response , determined by
external incentives.
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Example: dy(1)

— 2+ 2y(1) = x(0)

x(f)=eu(t) (0,)=2

Solution:
cA+2=0>1=-2 L=y, )+, () =Ade +e
Sy, ()= Ae™ My(0)=2—>A+1=2—>A=1

. R YR
'-'.)-’:(f)zé?_r, >0 .o y(f)—e +e . t>0

. y,()=Be" >y, (t)=—Be"

—Be"+2Be"=Be" > B=1
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Exercise : d’ y(t) +3-237 dy(t) +2y(t) = dX(t) +2X(t)
dt* dt

X(t)=e"u(t) y(0,)=0 y' 0,)=3

Notes:
The characteristic values are -1,-2, all with order 1,

The inputis X(t) — e‘tu(t)
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Example: dﬁit) 4+ 2y(t) = x(t) (D
a) x(t)=u(t) y(0)=0
b) X(t)=u(t+1) y(0)=0
Hints 1.

To calculate the particular solution and homogeneous
solution in different continuous region of the input signal

Hints 2:
From the LCCDE, we can find that for input a) and b), the

output and the 15t order differentiation of the output is
continuous at the disrupt point of the signal.

the output
value at O- or O*

W5.1
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2.4.1.2. Zero-input response and Zero-states response

@ zero-input response (FHIAMIN) Y . (t)
—— system response to the non-zero initial states

—— the response is part of homogeneous solution

E.g.: in case all the characteristic values are of order 1 (T4 ¥ EAR N HAR):

N
y,i (1) = Z Aie™ "
k=1

A, could be determined by the initial states/conditions y(") (0_)
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@zero-states response (ZFARZEMISL) Y (1)

—— system response to the external input

—— the response includes part of the homogenous solution and particular
solution

E.g.: in case all the characteristic values are of order 1 (T4 FEAR N EHAR):

N
Vi) =D Age™ +y (1)
k=1

A, could be determined by the states changes at time O, i.e.

{y*©,)-y"(0.)}
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(3) Complete solution

y(t) — yzi (t) + yzs (t)
= Z Azikeakt + Z Azskeakt +Y, (t)

J

'

zero—input zero—state
_ oyt
o Z Ake + yp (t)
k "
\ ~ / forced
nature

Homogeneous solution  Particular solution

Notes: the natural response =
zero-input response + part of zero-state response
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@ Linearity properties of zero-input and zero-state responses

Zero-state response is linear with the input

Zero-input response is linear with the initial state

x(1) V(1) 1
h(t) ()
V.. (1) )

™0}

Notes:
1. For LTI systems, the excitation and initial states can be thought of as two
separate inputs.

2. When the initial condition is not zero, there is no linear relationship
between the complete response of the system and the external excitation.
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Example: % +2y(t) = x(t)

y(0.)=2 x(t) =€

Solution:
a+2=0—>a=-2 y. t)=A e +e”
“Ya=Ag” V:5(0.) = ¥(0,) = ¥(0.) =0
y(0)=2—> A; =2 —>A =-1

L YL () =28 LY, () =—e +e7

y) =2 + (e +e )= +e
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@ y(0)=2 x(t)=e"
V() =2 y,(t)=—e"+e" y(t)=e" +e"

(2) y(0_)=2 x(t)=3e"
Yai (t) — 29_2@: 3(—9_2t +€ t)}/(t) = +3e™

(3 y(0.)=6 x(t)=e"

V) =-eZ+e’ y(t)=5e? e
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Exercises:

For a LTI system, the input x(t) satisfies x(t)=0 for t<0, under the
same initial conditions, we have

1, the overall system response to x(t) is Y, (t) =2e™ +cos(2t)
for t>0

2, the overall system response to 2x(t) is Y, (t) = e +2cos(2t)
for t>0

To determine the overall system response to 4x(t) with the same
Initial conditions



m " Institute of Media,
. .11 Information, and Network

For zero-input response:

—Classical approach: to calculate the homogeneous
solution (part)

For zero-state response

—Traditional approach: to calculate the particular
solution and homogeneous solution(part)

—— Convolution integral approach:  y(t) = x(t) * h(t)

—— Transform domain approaches: Fourier transform
(frequency domain), Laplace transform (s-domain), ...
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2.4.1.3. Transient state response and steady state response

Transient state response: the part of the response approaching to O,
when t -5 o

Steady state response: the non-zero part of the response,
when t — o0

Example: Y(t) = —e™" +4cos2t

- "
Transient Steady
Transient state response ---- Re[a;] <0

Steady state response ----- Re[a;] =0
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2.4.2 Linear Constant-Coefficient
Difference Equations

S a,yin—K]= 3 b,x{n K]

1. Iterative approach
2. Time domain approaches

- Homogeneous response + particular response
- Zero-input and zero-status responses

- Transient state response and steady state response
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2.4.2.1. Iterative approach

Example:

yln] =ay[n—1]+x[n]
X[n] = o[n]

y[n] = 0 when n<0

- y[0] = ay[-1]+ X[0] =ax0+6[0] =1
V[1] = ay[0]+ X[1] = ax1+o[1l]=a
y[2] = ay[1] + x[2] =axa+J[2] =a°

sy[n]=a"

Notes: Simple, but difficult to obtain the close-form response
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2. Time domain approach

1. Homogeneous solution + particular solution /
Natural response + forced response

@ homogeneous solution (V) YnlN]

Determine the characteristic values of

N
Z aa" =0
k=0

aS al\ az ) [©) O O a N

a. if all a;, are the characteristic values of order 1, (2.1R)

N
yh[n]zzciain =C,a, +Ca; +---+Cyay
i-1




]

b. if there are r different characteristic values q; , each with

Institute of Media,
Information, and Network

the order of o, (r'o,E R a)

y,[n]= Z Z Ciknk_lain

I=1 k=1

Notes:

1.

the coefficients c; or ¢, should be determined by the
auxiliary conditions simultaneously with those in the
particular solution, since the condition is the auxiliary
condition to determined the overall input-output
relationship .
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@ particular solution (f¢#f#) Yy, [n]

For any input signal x(t), we can get f[n] asf [n] Zb x[n k]
k=0

Then for y [n] is in the following forms corresponding to

different forms of f[n]

f[n] Corresponding form of particular solution

k k-1
k Bn" +B,n""+---+B,nN+B,,; Nocharacteristic value equals to 1

nr[Blnk + ank_l +---4+B,n+ B, ;] with characteristic value 1 of order r

n
4 B-o No characteristic value equals to a

[B,n+B,]a" with characteristic value a of order 1

[B,n” +B,n" " +-.. B, Ja" with characteristic value o of order r

COS,Bh /Sinﬂh Bl cosfn + 82 Sin n No characteristic value equals to e’
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3 complete Solution y[n] =y, [n]+ Y, [Nn]
Example:

y[n]+2y[n—1] = x[n]— x[n —1]
x[n]=n% n>0 Yl=-1

(DHomogeneous Solution

a+2=0->a=-2

S yp[n]=c-(-2)"
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(@ particular solution
Substituting x[n] —n?
in the right-side of the difference equation, the right-side of the equation becomes
f[nN]=n°-(n-1)*=2n-1
Let y,[n]=B,n+B,
And substituting it in the difference equation to determine the coefficients B, and B

[B,n+B,]+2[B,(n-1)+B,]=3B,n+3B, -2B, =2n-1

2
3B, = 2 B =3
—> 9
3,-28,=-1 |, 1
L
79
2 1
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(3 Complete Solution

2 1
Vinl=y,[nl+y, [ =c-(-2)" +Zn+¢

With the condition that

yil=-1  c=_9

8 2 1
~Svinl=——=(-2)"+=n+= n>0
y[]\9( )J3 5

\. v

A4 A

Natural Forced
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As to the auxiliary conditions

When the input signal is fed into the system at n=n,, define initial
conditions and start condition as

- Initial Conditions/States (#E#f%4F) : the system states
before the signal is fed into the system, {y[n,-1], y[ny-2]...., y[no-N]}

- Start Conditions/States (#Ji5%fF) : the first N states after the
signal is fed into the system, {y[n.], Y[n,*+1],..., Y[ng+N-1]}

Notes: For DT systems, we can obtain the start condition from the
initial condition by means of “iterative approach”
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2.4.2.2. Zero-input and zero-state responses

(D Zero-input response
Example: when a, is the characteristic value with order 1

yZI [n] Z Czlkak

C,i IS determlned by the initial conditions
2 Zero-state response

Example: when a, is the characteristic value with order 1

N
yzs[n] = Zczskal? + yp[n]
k=1

C, IS determined by the start conditions {y[n,], Y[ny*+1],..., Y[ny+N-1]}
of the ZS response, where n0 is the start time, i.e. the time the input
X[n] is fed into the system.
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@ y[n] — yzi [n] + yzs[n]
= Zczikal? + Zczskal? +Yy,[n]
" "

= Z:CiO‘in + yp[n]

Notes: Natural response (homogeneous response) =
the zero-input response + part of the zero-state response
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Example: y[n]+3y[n—-1]+2y[n—2] = X[n]

1

x[n]=2"u[n] Y[-1=0 yl-21=7

Soulution:

a’+3a+2=0—>ao,=-1 a,=-1

(1) yzi [n] — Czil(_l)n T Czi2 (_2)”
y[-1]=0 C,ip =1
{y[—Z] —_1/2" ¢, =2

~yuInl= ()" -2
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@y, [n]=c,,(-)"+c,(-2)"+B-2

Substituting the particular solution B-.2" in the difference equation

B-2"+3B-2"*+2B-2"% = 2"

3 1 1 For zero-state
(B+—B+=B)=2" >B== response, the initial
2 2 3 ates are 0!

I.e. the system states
before the input is fed
into the system are 0!

yzs[n] =Cx (_1)n +C,

Ay =y,[-2]=0
yzs O] — _Byzs [_1] o 2yzs [_2] + X[O] =1 —)% CZSl - 5
Yis 1] =-3 Y [O] - 2yzs [_1] + X[l] =-1 C., = 1

~y.[n]= —%(—1)n +(=2)" +%-2”
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M.l

~yIn]=y,[n]+y,ln]

= (-1 :2(—1)1—%(—1)” +(=1)" +%.2“

zero—input response ~ Y
zero—states response

2 1
= 2D (D" 432"
3 3
. ~ / —_  —
natural response forced response
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@ Linearity properties of zero-input and zero-state responses

Zero-state response is linear with the input

Zero-input response is linear with the initial state
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Example:
y[n] - yIn—1]-2y[n—2] = x[n] + 2x[n — 2]
xnl=uln]  y[-0=2 y[-21=—>

Determine
1. Natural response and forced response

2. Zero-input and zero-state responses

Hints: You may first calculate the zero-state response for x[n], then that
for x[n-2]
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Special case: to determine h[n] for a system represented by difference equations

Since h[n] is the zero-state response to the input of d[n], the problem is equivalent
to calculate the zero-state response of the system with initial conditions and input

X[n] = o[n]
{h[n] =0,n<0

#1: y[n]—3y[n—1]+3y[n—2]— y[n—3] = x[n]

X[n] = o[n]
{h[n] =0,n<0

> h[0] = 2

— h[0] =1

v’ —3a® +3a—-1=0
(o —1)° =1 — o =1 is the characteristic value with order 3

- h[n]=c¢,n*+c,n+c,



‘h[0]=1
sh[]=3 —+
h[2] =6
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-

.

C, = 1 Notes: the
2 coefficients could be
3 determined by the
C,=— start conditions after
2 Q the impulse
C :1 O O \
3

h[n]=%(n2+3n+2), n>0
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2.4.2.3. Transient state response and steady state response

Examples:
6y[n]—3y[n-1]+ y[n—2] = X[n]
x[n] = 10 cos[%z] ] y[0]1=0,y[1]=1

yin] = 2-(%)“ —3-(%)” #2cos| -]
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Till now, we have discussed 2 system description methods in time
domain
1. h(t)/h[n]

* h(t)/n[n] could sufficiently describe a LTI system
- () = x(t) *h(t) / y[n] = x[n] *h[Nn] is the zero-state response of the

system

2. Differential/difference equations

A differential/difference equation cannot fully describe a LTI system, it
needs some auxiliary conditions

» Under certain conditions, one could obtain complete response of the
system

Notes: in the later of this course, we focus on the causal LTI systems,
l.e. systems represented by difference/differential equations with initial
rest conditions.,
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2.4.3 Linear Constant-Coefficient
Differential Equations

kzi; o~ (t) kib akx(t)

- The differential equation describes the implicit
expression between the input and output of the system.
- The solution of differential equations is to find the
explicit expression between input and output.
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2.4.3 Block Diagram Representations of
First-Order Systems Described by
Differential and Difference Equations
1. y[n]+ay[n—1]=bx[n]
— y[n]=—-ay[n—1]+bx[n]

b )
"

y(n)

x(n)

-a

Three basic elements in block diagram:

adder(n¥E28), multiplier/amplifier(% & ¥3Ri1%:5%), unit delayer (BALFER %)
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2 ﬁ()+ay(t) bx(t)
dy(t)
dt

ay(®)
dt

o
X(t)
-a

=220 = —ay(t) +bx(t) - y(t) = [[-ay(z) +bx()lz

s

Three basic elements in block diagram:

adder(inyE2s), multiplier/amplifier (% REERIESS), integrator(FR4728)

y(t)
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Example:
To describe the following system in the form of constant-coefficient
difference equation b

2

b,
- > _[ —> I m > +
X(t ' (1, Wz(t) ()
-,
-8,

y(t) =b,z"(t) + b,z (t) + b, z(t)
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Ly () =b[z ()] +b[z ()] +by[z(t)]
ay (t) =b,[a,z ()] +b[az (t)] +by[a,z(t)]

3,y (t) =b, [a@oz (O]+bi[agz ()]+by[a,z(t)]
sy @) +ay () +ay(t) X 7' (t) = X(t) —a,z (t) —a,z(t)

=b,[z () +az (t)+a,z()]  —z(t)+azt)+azt)=x()

+b[z () +2,2 ) +a,z(t)] ?
+bo[Z (1) +3,Z (t) +3,2(1)]

Sy (O +ay (1) +a,y(t) =0,x (1) +bx (t) +bx(t)
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Homework

« BASIC PROBLEMS WITH ANSWER:
2.1, 2.4, 2.8, 2.11, 2.19

« BASIC PROBLEMS:
2.24, 2.40, 2.46, 2.32, 2.33
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