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Introduction

• By exploiting the properties of superposition and 
time invariance, if we know the response of an LTI 
system to some inputs, we actually know the response to 
many inputs

If

then

ሿ𝑥𝑘[𝑛ሿ → 𝑦𝑘[𝑛

൧෌
𝑘

ሿ𝑎𝑘𝑥𝑘[𝑛 → σ𝑘 𝑎𝑘 𝑦𝑘[𝑛



Introduction

• If we can find sets of “basic” signals so that

▫ We can represent rich classes of signals as linear 
combinations of these building block signals.

▫ The response of LTI Systems to these basic signals 
are both simple and insightful.

• If we represent input signal as a linear combination of 
these basic signals, then the output is the combination 
of the responses of such basic signals.

• Candidate sets of basic signal

▫ Unit impulse function 

▫ Complex exponential/sinusoid signals.
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• For example:

x[n]=…x[-3] δ[n+3]+ x[-2] δ[n+2]+ …+x[0] δ[n] 
+x[1] δ[n-1]+…

• i.e.: x[n] can be represented as the weighted sum

2.1.1 The Representation of Discrete-Time 

Signals in terms of Impulses

𝑥[𝑛ሿ = ෍

𝑘=−∞

+∞

ሿ𝑥[𝑘ሿ𝛿[𝑛 − 𝑘

Weight Basic signal



2.1.2 Convolution-Sum Representation of LTI 

Systems

• 1.Assume  

and  

so

Unit impulse response

Time invariant

𝑥[𝑛ሿ = ෍

𝑘=−∞

+∞

ሿ𝑥[𝑘ሿ𝛿[𝑛 − 𝑘



Convolution-Sum Representation of LTI Systems

• LTI system can be represented by using unit 
impulse response.

• The  output of LTI system is the convolution 
sum of input and unit impulse response.



• 2. Convolution sum

Convolution-Sum Representation of LTI Systems



• 2. Convolution sum

Computing method 1-- graphic method

▫ Step 1: change variable n         k 

x1[n]          x1[k],  x2[n] x2[k]

▫ Step 2: reflect:  x2[k]          x2[-k]

▫ Step 3: shift:

x2[-k]          x2[n-k]

▫ Step 4: multiply and sum:

Convolution-Sum Representation of LTI Systems



Convolution-Sum Representation of LTI Systems





• 2. Convolution sum

Computing method 2-- the property of  

Convolution-Sum Representation of LTI Systems



Note: only suitable for limited length sequence.
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2.2.1 The representation of Continuous-Time 

Signals
• Approximate a CT signal x(t) as a sum of shifted, scaled pulses

• If

• then

• so









 dtxtx )()()(

Basic SignalsWeights



2.2.2 The Convolution Integral Representation 

of LTI System

• For a LTI system with the response of h(t) to  the unit 
impulse δ(t) 

x(t) y(t)CT LTI System

)()( tht  —— Unit Impulse Response

Time-invariance allows 

)()(   tht



The Convolution Integral Representation of LTI 

System

• Considering the weighted integral of delayed impulse 
representation of x(t) 

• So


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The Convolution Integral Representation of LTI 

System

1. A LTI system is completely characterized by its response 
to the unit impulse ---- h(t)

2. The response y(t) to an input CT signal x(t) of a LTI 
system is the convolution of h(t) and x(t)



The Convolution Integral Representation of LTI 

System

• Convolution Integral
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The Convolution Integral Representation of LTI 

System

• Convolution Integral
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The Convolution Integral Representation of LTI 

System

• Method 1 – graphic method
▫ Step 1. Replace t with τ for signals x1(t) and x2(t), i.e. τ

is the independent variable

▫ Step 2. Obtain the time reversal of x2(τ)

▫ Step 3. For the output value at any specific time t, shift 
x2(-τ) with offset t to obtain x2(t-τ)

▫ Step 4. Multiply the two sequences x1(τ)  and x2t-τ)
obtained in Step 1 and Step 3, respectively, and 
integrate the resulting product from                to   







The Convolution Integral Representation of LTI 

System

• Method 2 -- exploit the property of  δ(t) 

If

Then











Supplements -- convolution 



Supplements –δ function
1. Definition

2. Odd-even property (奇偶性）

3. The  Differential and Integration Property （微积分特性）



Supplements –δ function

4. The  Shifting Property in time domain （时移特性）

5. Multiply

6. Sifting property(筛选特性）

7. Scale property（尺度特性）
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2.3.1 The Commutative Property（交换律）



2.3.2 The Distributive Property（分配律）



2.3.3 The Associative Property （结合律）



2.3.4 LTI Systems with and without 

Memory（有记忆和无记忆的LTI系统）

According to the definition of memoryless,  y[n] only 
depend on x[n], so 

The unit impulse response of memoryless LTI:



2.3.5 Invertibility of LTI Systems（LTI系统
的可逆性）
• According to the property of identical system, if h(t) is 

invertible and its inverse system is h1(t), then

• For example:



2.3.6 Causality for LTI Systems（LTI系统的
因果性）

According to the definition of causality,  y[n] only 
depend on x[k] (k<=n ),  so 

i.e.

0)( th for t<0

0][ nh for n<0
Sufficient and necessary condition



2.3.7 Stability for LTI Systems（ LTI系统的
稳定性）
• The sufficient and necessary condition for a LTI system 

to be stable is that its impulse response satisfies 





dtth )(




n

nh ][

Absolutely integrable

Absolutely summable

Hint:
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2.4.1 Linear Constant-Coefficient

Differential Equations

• The differential equation describes the implicit 
expression between the input and output of the system.

• The solution of differential equations is to find the 
explicit expression between input and output.
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• However, only a linear constant-coefficient 
differential/difference equation cannot specify a 
continuous-time system uniquely. 

Other conditions are required!

• The complete solution of a linear constant-coefficient 
differential/difference equation can be decomposition 
into:

 Homogeneous Solution (natural response)  and Particular 
Solution (force response)

 Zero-Input Response and Zero-State Response 

 Transient-State Response and Steady-State Response 



2.4.1.1. Homogeneous Solution (natural response)  and Particular 

Solution (forced response)

①homogeneous solution (齐次解):                satisfies              )(tyh

Determine the characteristic values of

a) if all αi are the characteristic values of order 1, (单根)
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b). if there are r different characteristic values (有重根)

Suppose αi is the k order  repeated root

Notes：
1. the coefficients Ai or Aj should be determined by the auxiliary conditions 

simultaneously with those in the particular solution, since the condition is 

the auxiliary condition to determined the overall input-output relationship . 
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For any input signal x(t), we can get f(t) as

Then for yp(t) is in the following forms corresponding to 

different forms of f(t) 
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Corresponding form of particular solutionf(t)

(Constant input is a special case with p=0)

α is not the characteristic value

α is the characteristic value with order 1

α is the characteristic value with order k

② particular solution (特解)



)(ty p

1. Coefficients in the particular solution:  substituting yp(t) in the equation

we can obtain all the coefficients in the particular solution, except for 

those items associated with           , where α is the characteristic value

2.  Other coefficients:  substituting the complete solution in the initial 

conditions, 

Then all coefficients in the complete solution are obtained

③ Determine coefficients in )(tyh
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Notes：
1. The particular solution of a system is fully determined by the input signal;

2. As for the homogeneous solution, the form only determined by the system itself, 

the input signal will show its impact on the coefficients in solution 



TIP

• The complete solution=

homogeneous solution + particular solution

• Natural response --- homogeneous response , determined by 
the characteristics of systems.

Forced response --- particular response , determined by 
external incentives.
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Exercise :

Notes：
The characteristic values are -1,-2, all with order 1,

The  input is ( ) ( )tx t e u t
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Example:

0)0()()(  ytutx

（1）

0)0()1()(  ytutx

a)

b)

To calculate the particular solution and homogeneous 

solution in different continuous region of the input signal 

From the LCCDE, we can find that for input a) and b), the 

output and the 1st order differentiation of the output is 

continuous at the disrupt point of the signal.

Hints 1:

Hints 2:

the output 

value at 0- or 0+

W5.1



① zero-input response (零输入响应) )(tyzi

—— system response to the non-zero initial states

—— the response is part of homogeneous solution

E.g.：in case all the characteristic values are of order 1 (所有特征根为单根)：
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2.4.1.2. Zero-input response and Zero-states response

Azik could be determined by the initial states/conditions )0()(
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ky



②zero-states response (零状态响应) )(tyzs

—— system response to the external input

—— the response includes part of the homogenous solution and particular 

solution
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E.g.：in case all the characteristic values are of order 1 (所有特征根为单根)：

Azsk could be determined by the states changes at time 0, i.e.   
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Notes: the natural response =

zero-input response + part of zero-state response

③ Complete solution 

Homogeneous solution Particular solution



④ Linearity properties of zero-input and zero-state responses

Zero-state response is linear with the input

Zero-input response is linear with the initial state

Notes：

1. For LTI systems, the excitation and initial states can be thought of as two 

separate inputs.

2. When the initial condition is not zero, there is no linear relationship 

between the complete response of the system and the external excitation.
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Exercises：

For a LTI system, the input x(t) satisfies x(t)=0 for t<0, under the 

same initial conditions, we have

1, the overall system response to x(t) is                                             , 

for t>0  

2, the overall system response to 2x(t) is                                           , 

for t>0 

To determine the overall system response to 4x(t) with the same 

initial conditions

)2cos(2)(1 tety t  

)2cos(2)(2 tety t  



For zero-input response:

—Classical approach：to calculate the homogeneous 

solution (part)

For zero-state response

——Traditional approach：to calculate the particular 

solution and homogeneous solution(part)

—— Convolution integral approach：

—— Transform domain approaches： Fourier transform 

(frequency domain), Laplace transform (s-domain), …

)()()( thtxty 



2.4.1.3. Transient state response and steady state response

t

t

Transient state response: the part of the response approaching to 0, 

when 

Steady state response: the non-zero part of the response, 

when 

Example:  
SteadyTransient

t tety 2cos4)(  

Transient state response ---- Re[𝛼𝑖ሿ < 0

Steady state response  ----- Re[𝛼𝑖ሿ = 0



2.4.2 Linear Constant-Coefficient

Difference Equations

1. Iterative approach

2. Time domain approaches

• Homogeneous response + particular response

• Zero-input and zero-status responses

• Transient state response and steady state response
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Notes: Simple, but difficult to obtain the close-form response

Example:

[0] [ 1] [0] 0 [0] 1y ay x a       

[1] [0] [1] 1 [1]y ay x a a     
2[2] [1] [2] [2]y ay x a a a     

nany  ][

。。。

2.4.2.1. Iterative approach

when n<0
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1．Homogeneous solution + particular solution / 
Natural response + forced response

① homogeneous solution (齐次解)

2. Time domain approach

Determine the characteristic values of

a. if all αi are the characteristic values of order 1, (单根)
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b. if there are r different characteristic values αi , each with 

the order of σi (r个σi重根αi)

Notes：
1. the coefficients ci or cik should be determined by the 

auxiliary conditions simultaneously with those in the 

particular solution, since the condition is the auxiliary 

condition to determined the overall input-output 

relationship . 
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② particular solution (特解)
For any input signal x(t), we can get f[n] as

Then for yp[n] is in the following forms corresponding to 

different forms of f[n] 
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Corresponding form of particular solutionf[n]

No characteristic value equals to 1

with characteristic value 1 of order r

No characteristic value equals to α

with characteristic value α of order 1

with characteristic value α of order r

No characteristic value equals to
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② particular solution

in the right-side of the difference equation, the right-side of the equation becomes

Let

And substituting it in the difference equation to determine the coefficients B1 and B2

Substituting
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③ Complete Solution

With the condition that 

Natural Forced



As to the auxiliary conditions

Notes: For DT systems, we can obtain the start condition from the 

initial condition by means of “iterative approach”

When the input signal is fed into the system at n=n0, define initial 

conditions and start condition as 

• Initial Conditions/States （起始条件）:  the system states 

before the signal is fed into the system, {y[n0-1], y[n0-2],…, y[n0-N]}

• Start Conditions/States （初始条件）: the first N states after the 

signal is fed into the system, {y[n0], y[n0+1],…, y[n0+N-1]}
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例： 为特征单根时

② Zero-state response

① Zero-input response

2.4.2.2．Zero-input and zero-state responses

Example: when αk is the characteristic value with order 1 

czik is determined by the initial conditions

Example: when αk is the characteristic value with order 1 

czsk is determined by the start conditions {y[n0], y[n0+1],…, y[n0+N-1]} 

of the ZS response, where n0 is the start time, i.e. the time the input 

x[n] is fed into the system.
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Notes: Natural response (homogeneous response) =
the zero-input response + part of the zero-state response
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For zero-state 

response, the initial 

states are 0! 
i.e. the system states 

before the input is fed 

into the system are 0!
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④ Linearity properties of zero-input and zero-state responses

Zero-state response is linear with the input

Zero-input response is linear with the initial state
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Example:

Hints: You may first calculate the zero-state response for x[n], then that 

for x[n-2]

Determine

1. Natural response and forced response

2. Zero-input and zero-state responses



Special case: to determine h[n] for a system represented by difference equations

Since h[n] is the zero-state response to the input of δ[n],  the problem is equivalent 

to calculate the zero-state response of the system with initial conditions and input  

of 
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is the characteristic value with order 3
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Notes: the 

coefficients could be 

determined by the 

start conditions after 

the impulse
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Examples:

2.4.2.3. Transient state response and steady state response



Till now, we have discussed 2 system description methods in time 

domain

1. h(t)/h[n]

• h(t)/h[n] could sufficiently describe a LTI system

• is the zero-state response of the 

system

][][][/)()()( nhnxnythtxty 

2. Differential/difference equations

• A differential/difference equation cannot fully describe a LTI system, it 

needs some auxiliary conditions

• Under certain conditions, one could obtain complete response of the 

system

Notes: in the later of this course, we focus on the causal LTI systems, 

i.e. systems represented by difference/differential equations with initial 

rest conditions。



2.4.3 Linear Constant-Coefficient

Differential Equations

• The differential equation describes the implicit 
expression between the input and output of the system.

• The solution of differential equations is to find the 
explicit expression between input and output.
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b
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x(n) y(n)

1.

Three basic elements in block diagram: 

adder(加法器),  multiplier/amplifier(常系数乘法器), unit delayer(单位延时器)
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2.4.3 Block Diagram Representations of 

First-Order Systems Described by 

Differential and Difference Equations
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2. 

Three basic elements in block diagram: 

adder(加法器), multiplier/amplifier(常系数乘法器),  integrator(积分器)



Example：
To describe the following system in the form of constant-coefficient 

difference equation
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Homework 

• BASIC PROBLEMS WITH ANSWER: 

2.1, 2.4, 2.8, 2.11, 2.19

• BASIC PROBLEMS: 

2.24, 2.40, 2.46, 2.32, 2.33



Many Thanks 

Q & A
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